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Transition to turbulence in a shear flow
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We analyze the properties of a 19-dimensional Galerkin approximation to a parallel shear flow. The laminar
flow with a sinusoidal shape is stable for all Reynolds numbers Re. For sufficiently large Re additional
stationary flows occur; they are all unstable. The lifetimes of finite amplitude perturbations shows a fractal
dependence on amplitude and Reynolds number. These findings are in accord with observations on plane
Couette flow and suggest a universality of this transition scenario in shear flows.@S1063-651X~99!02907-4#
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I. INTRODUCTION

In many flows the transition to turbulence proceeds vi
sequence of bifurcations to flows of ever increasing spa
and temporal complexity. Analytical and experimental
forts, in particular, on layers of fluid heated from below@1,2#
and fluids between rotating concentric cylinders@2,3# have
lead to the identification and verification of several routes
turbulence that typically involve a transition from a stru
tureless laminar state to a stationary spatially modulated
and then to more complicated states in secondary and hi
bifurcations.

Transitions in shear flows do not seem to follow this p
tern @4#. Typically, a transition to a turbulent state can
induced for sufficiently large Reynolds number with fini
amplitude perturbations, just as in a subcritical bifurcati
However, in the most spectacular cases of plane Couette
between parallel plates and Hagen-Poiseuille flow in a p
@5#, there is no linear instability of the laminar profile for an
finite Reynolds number that could give rise to a subcriti
bifurcation. The turbulent state seems to be high dimensio
immediately, without clear temporal or spatial patterns~un-
like the rolls in Rayleigh-Be´nard flow!. And the transition
seems to depend sensitively on the initial conditions. Ba
on these characteristic features it has been argued that a
sition to turbulence different from the well-known three low
dimensional ones is at work@6#.

Recent activity has focused on three features of this tr
sition: the non-normality of the linear eigenvalue proble
@6–11#, the occurrence of stationary states without instabi
of the linear profile@12–15#, and the fractal properties of th
lifetime landscape of perturbations as a function of am
tude and Reynolds number@16#. The non-normality of the
linear stability problem implies that even in the absence
exponentially growing eigenstates, perturbations can
grow in amplitude before decaying since the eigenvectors
not orthogonal. During the decay other perturbations co
be amplified, giving rise to a noise-sustained turbulence@17#.
The amplification could also cause random fluctuations
grow to a size where the nonlinear terms can no longer
neglected@10,11#. Then the dynamics including the nonlin
ear terms could belong to an asymptotic state, different fr
the laminar profile, perhaps a turbulent attractor. Pres
PRE 601063-651X/99/60~1!/509~9!/$15.00
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ably, this attractor would be built around stationary or pe
odic solution. Here, the observation of tertiary structu
@12–15# comes in since they could form the basis for t
turbulent state. Finally, the observation of fractality in t
lifetime distribution suggests that the turbulent state is not
attractor but rather a repeller: Infinite lifetimes occur on
along the stable manifolds of the repeller, all other init
conditions will eventually decay. Permanent turbulen
would thus correspond to noise-induced excitations ont
repeller.

In plane Couette flow some of the features describ
above have been identified, but only with extensive num
cal effort @12–14,16#. The aim of the present paper is t
present a simple model that is based on the Navier-Sto
equation and captures the essential elements of the trans
It is motivated in part by the desire to obtain a numerica
more accessible model that perhaps will provide as m
insight into the transition as the Lorenz model@18# for the
case of fluids heated from below~presumably at the price o
similar shortcomings!. The two and three degree of freedo
models proposed by various groups~and reviewed in@19#! to
study the effects of non-normality mock some features of
Navier-Stokes equations considered essential by their inv
tors but they are not derived in some systematic way fr
the Navier Stokes equation. The model used here dif
from the one proposed by Waleffe@10# in the selection of
modes.

Attempts to build models for shear flows using Four
modes immediately reveal an intrinsic difficulty: In the ca
of fluids heated from below the nonlinearity arises from t
coupling of the temperature gradient to the flow field so t
two wave vectors,k and 2k, suffice to obtain nonlinear cou
plings. In shear flows, the nonlinearity has to come from
coupling of the flow field with itself through the advectio
term (u•¹)u. This imposes rather strong constraints on t
wave vectors. At least three wave vectors satisfying the
angle relationk11k21k350 are required to collect a con
tribution from the advection term. A minimal model thus h
at least six complex variables. Three of these decay mo
tonically to zero, leaving three for a nontrivial dynamics.
the subspaces investigated~B.E., unpublished!, the most
complex behavior found is a perturbed pitchfork bifurcatio
which may be seen as a precursor of the observed dynam
509 ©1999 The American Physical Society
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510 PRE 60BRUNO ECKHARDT AND ALOIS MERSMANN
for Reynolds numbers below a critical value, there is o
one stable state. Above that value a pair of stable and
stable states is born in a saddle-node bifurcation. The st
state can be excited through perturbations of sufficient
plitude. The basins of attraction of the two stable states
intermingled, but the boundaries are smooth.

Thus more wave vectors are needed and they hav
couple in a nontrivial manner to sustain permanent dyna
ics. The specific set of modes used is discussed in Sec.
is motivated by boundary conditions for the laminar profi
and the observation that wave vectors pointing to the vort
of hexagons satisfy the triangle conditions in a most sy
metrical manner. Other than that the selected vectors a
matter of trial and error. In the end we arrive at a model w
19 real amplitudes, 2 force terms, and 212 quadratic c
plings. Without driving and damping the dynamics is ener
conserving, as would be the corresponding Euler equa
~suitably truncated!. Moreover, the perturbation amplitude
can be put together to give complete flow fields. Thus
model has a somewhat larger number of degrees of freed
but the dynamics should provide a realistic approximation
shear flows.

The outline of the paper is as follows. In Sec. II w
present the model, in particular the selected wave vect
the equations of motion, and a discussion of symmetries
Sec. III we focus on the dynamical properties of initial pe
turbations as a function of amplitude and Reynolds numb
In Sec. IV we discuss the stationary states, their bifurcatio
and their stability properties. We conclude in Sec. V with
summary and a few final remarks.

II. THE MODEL SHEAR FLOW

Ideal parallel shear flows have infinite lateral extensi
Both in experiment and theory this cannot be realized. W
therefore, follow the numerical tradition and chose perio
boundary conditions in the flow and neutral direction. T
flow is confined by parallel walls a distanced apart. A con-
venient way to build a low-dimensional model is to use
Galerkin approximation. Solid boundaries would require
vanishing of all velocity components and complicated Ga
kin functions where all the couplings can only be calcula
numerically. However, under the assumption that here
well as in many other situations the details of the bound
conditions effect the results only quantitatively but not qua
tatively, we can adopt free-free boundary conditions on
walls and use simple trigonometric functions as a basis
the Galerkin expansion. Similarly, the nature of the drivi
~pressure, boundary conditions, or volume force! should not
be essential so that we take a volume force proportiona
some basis function~or a linear combination thereof!. This
still leaves plenty of free parameters to be fixed below.

A. Galerkin approximation

We expand the velocity field in Fourier modes,

u~x,t !5(
k

u~k,t !eik•x. ~1!

Incompressibility demands
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u~k,t !•k50. ~2!

The Navier-Stokes equation for the amplitudesu(k,t) be-
comes

] tu~k,t !52 ipkk2 i (
p1q5k

@u~p,t !•q#u~q,t !

2nk2u~k,t !1 f k , ~3!

where pk are the Fourier components of the pressure~di-
vided by the density!, n is the kinematic viscosity, andf k are
the Fourier components of the volume force sustaining
laminar profile.

There are three constraints on the componentsu(k): in-
compressibility~2!, reality of the velocity field,

u~2k!5u~k!* , ~4!

and the boundary conditions that the flow is limited by tw
parallel, impenetrable plates. The ensuing requirem
uz(x,y,z)50 at z50 and z5d ~where d is the separation
between plates! is most easily implemented through perio
icity in z and the mirror symmetry,

S ux

uy

uz

D ~x,y,2z!5S ux

uy

2uz

D ~x,y,z!, ~5!

which, in Fourier space, requires

S ux

uy

uz

D ~2kx ,2ky ,kz!5S ux*

uy*

2uz*
D ~kx ,ky ,kz!. ~6!

This is not sufficient to fix the coefficients: the dynamics a
has to stay in the relevant subspace, and thus the time
rivatives have to satisfy similar requirements.

B. The wave vectors

The choice of wave vectors is motivated by the geome
of the flow and the aim to include nonlinear couplings. T
basic flow shall be a flow in they direction, neutral in thex
direction, and sheared in thez direction. Thus we take the
first three wave vectors in thez direction,

k15S 0

0

1
D , k25S 0

0

2
D , k35S 0

0

3
D . ~7!

The negative vectors2k i also belong to the set but will no
be numbered explicitly. In these units, the periodicity in t
z direction is 2p, so that the separation between the plate
d5p because of the mirror symmetry~5!. The amplitude
u(k1) will carry the laminar profile andu(k3) can be excited
as a modification to the laminar profile.k2 is needed to pro-
vide couplings through the nonlinear term. These three v
tors satisfy a triangle identityk11k22k350, but the non-
linear term vanishes since they are parallel.
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PRE 60 511TRANSITION TO TURBULENCE IN A SHEAR FLOW
The next set of wave vectors contains modulations in
flow and neutral direction,

k45S 1

0

0
D , k55S 1/2

A3/2

0
D , k65S 1/2

2A3/2

0
D . ~8!

Together with2k i they form a regular hexagon, so that th
provide nontrivial couplings in the nonlinear term. The pe
odicity in flow direction is 4p/A3, in the neutral direction it
is 4p.

Finally, this hexagon is lifted upwards withk1 andk2 to
form the remaining 12 vectors,

k75k11k4 , k85k11k5 , k95k11k6 ,

k105k12k4 , k115k12k5 , k125k12k6 ,

k135k21k4 , k145k21k5 , k155k21k6 ,

k165k22k4 , k175k22k5 , k185k22k6 . ~9!

The full setk i , i 51 . . . 18 isshown in Fig. 1.
The Fourier amplitudesu(k i) have to be orthogonal tok i

because of incompressibility~2!. If they are expanded in ba
sis vectors perpendicular tok i , the pressure drops out of th
equations and need not be calculated. We, therefore, c
normalized basis vectors,

n~k i !5S 2kxkz

kx
21ky

2 ,
2kykz

kx
21ky

2 ,1D TY A11kz
2/~kx

21ky
2!,

m~k i !5~ky ,2kx ,0!T/Akx
21ky

2, ~10!

so thatn, m, andk form an orthogonal set of basis vector
For the negative vectors2k i we chose the basis vecto
n(2k i)5n(k i) andm(2k i)52m(k i). If the x andy com-
ponents ofk vanish, the above definitions are singular a
replaced by

FIG. 1. The 19 wave vectorsk1 , . . . ,k19. The full set is ob-
tained by complementing with2k i . Thus, there are only thre
vectors on the symmetry planez50, six each on the two levels
above and a single one on the third plane withkz53.
e

-

se

n5~1,0,0!T, m5~0,1,0!T. ~11!

The Fourier amplitudes of the velocity are now expanded

u~k i ,t !5a~k i ,t !n~k i !1b~k i ,t !m~k i !. ~12!

The impenetrable plates impose further constraints on
a(k i) andb(k i). For i 51, 2, and 3, the wave vector has n
components in thex andy directions, so thata andb have to
be real. Fori 54, 5, and 6, the velocity field cannot have an
components in thez direction; hence,a50. The remaining
wave vectorsk i and 2k i with i 57, . . .,18, a total of 24,
divide up into six groups of four vectors each,

k5~kx ,ky ,kz!, k85~2kx ,2ky ,kz!, 2k and 2k8.
~13!

The groups are formed by the vectors and their negative
the pairs with indices~7,10!, ~8,11!, ~9,12!, ~13,16!, ~14,17!,
and ~15,18!. The amplitudes of the vectors in the sets a
related by

a~k!5a~2k!* 52a~k8!* ,

b~k!5b~2k!* 52b~k8!* . ~14!

Thus the full model has 6161634536 real amplitudes.
Restricting the flow by a point symmetry aroundx0
5(0,0,p/2)T eliminates the contributions fromk2 and some
other components, resulting in a 19-dimensional subsp
with nontrivial dynamics and the following amplitudes:

a~k1!5y1 , b~k1!5y2 , a~k3!5y3 ,

b~k3!5y4 , b~k4!5 iy5 , b~k5!5 iy6 ,

b~k6!5 iy7 , a~k7!5y8 , b~k7!5y9 ,

a~k8!5y10, b~k8!5y11, a~k9!5y12,

b~k9!5y13, a~k13!5 iy14, b~k13!5 iy15,

a~k14!5 iy16, b~k14!5 iy17, a~k15!5 iy18,

b~k15!5 iy19; ~15!

components not listed vanish or are related to the given o
by the boundary conditions~14!. A complete listing of the
flow fields ui associated with the coefficientsyi such thatu
5( i yiui as well as of the equations of motion are availab
from the authors.

C. The equations of motion

In this 19-dimensional subspace (y1 , . . . ,y19) the equa-
tions of motion are of the form

ẏi5(
j ,k

Ai jkyjyk2nKiyi1 f i . ~16!

Of the driving force all components butf 2 and f 4 vanish.
Moreover, if the f ’s are taken to be proportional ton, the
resulting laminar profile has an amplitude independent
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512 PRE 60BRUNO ECKHARDT AND ALOIS MERSMANN
viscosity ~and thus Reynolds number!. These component
give rise to a laminar profile that is a superposition of
cos(z) profile ~from f 2) and a cos(3z) profile ~from f 4). This
allows us to approximate the first two terms of the Four
expansion of a linear profile with velocityuy561 at the
walls,

u05
8

p2 S cosz1
1

9
cos 3zDey , ~17!

which can be obtained with a drivingf 254n/p2 and f 4
54n/9p2 ~see Fig. 2!.

The nonlinear interactions in the Navier-Stokes equat
conserve the energyE5 1

2 *dV u2. In the 19-dimensiona
subspace, the corresponding quadratic form is

E5VS (
i 51

7

yi
212(

i 58

19

yi
2D . ~18!

The above equations conserve this form without driving a
dissipation. With dissipation but still without driving, th
time derivative is negative definite, indicating a monoton
decay of energy to zero.

Finally, we define the Reynolds number using the w
velocity of the linear profile,u051, the half width of the
gap,D5d/25p/2, and the viscosityn,

Re5u0D/n5p/2n. ~19!

The other geometric parameters are a period 4p/A3 in flow
direction and 4p perpendicular to it.

D. Symmetries

We achieved the impenetrability of the plates by requir
the mirror symmetry:

S ux

uy

uz

D ~x,y,2z!5S ux

uy

2uz

D ~x,y,z!. ~20!

FIG. 2. The laminar profile in case of one or two driven mod
compare Eq.~17!.
r

n

d

ll

The reduction from 36 to 19 modes was achieved by restr
ing the dynamics to a subspace where the flow has the p
symmetry aroundx05(0,0,p/2)T, a point in the middle of
the shear layer,

S ux

uy

uz

D ~x,y,z1p/2!5S 2ux

2uy

2uz

D ~2x,2y,2z1p/2!.

~21!

In addition, there are further symmetries that can be use
reduce the phase space. There is a reflection on they-z plane,

T1 :S ux

uy

uz

D ~x,y,z!→S 2ux

uy

uz

D ~2x,y,z!, ~22!

and two shifts by half a lattice spacing,

T2 :S ux

uy

uz

D ~x,y,z!→S ux

uy

uz

D ~x12p,y,z!, ~23!

T3 :S ux

uy

uz

D ~x,y,z!→S ux

uy

uz

D ~x1p,y1p/A3,z!. ~24!

When applied to the flow, these transformations indu
changes in the variablesyi ~typically exchanges or sign
changes!, but the equations of motion are invariant und
these transformations. Thus, if a certain flow has this sy
metry, it leads to constraints on the variablesyi , and if it
does not have this symmetry immediately a flowfield can
obtained by applying this symmetry transformation. We
not attempt to analyze the full symmetry structure here a
confine our discussion to two illustrative examples, whi
are relevant for the stationary states discussed below.
manding invariance of the flow field to the reflection sym
metry T1 leads to the following constraints on the variabl
yi :

y15y35y55y85y1550,

y65y7 y1052y12,

y115y13 y1652y18 y175y19. ~25!

The nonvanishing components,y2 , y4 , y65y7 , y9 , y105
2y12, y115y13, y14, y1652y18, andy175y19 thus define a
nine-dimensional subspace.

For the combined symmetryT1T2 we find the constraints

y15y35y55y85y1550,

y652y7

y105y12,

y1152y13 y165y18 y1752y19, ~26!

;
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PRE 60 513TRANSITION TO TURBULENCE IN A SHEAR FLOW
and again a nine-dimensional subspace with nonvanis
componentsy2 , y4 , y652y7 , y9 , y105y12, y1152y13,
y14, y165y18, and y1752y19. The dimensions of the in
variant spaces vary from a minimum of six~for each aT1T3
andT1T2T3 invariance! to a maximum of ten~for T2T3 in-
variance!.

As mentioned, one can classify flows according to th
symmetries. The most asymmetric flows are eightfold deg
erate as the application of the eight combinations of the s
metries give eight distinct flows. The laminar flow profile
invariant under all the linear transformations and is the o
member of the class with highest symmetry. The other
tionary states discussed below fall into equivalence clas
with eight members or four members if they are invaria
underT1 or T1T2.

III. DYNAMICS OF PERTURBATIONS

A stability analysis shows that the laminar flow profile
linearly stable for all Reynolds numbers. The matrix of t
linearization is non-normal with a block structure along t
diagonal. To bring this structure out more clearly, it is bes
order the equations in the sequence 1, 2, 3, 4, 5, 7, 15,
14, 13, 19, 12, 18, 6, 11, 17, 10, 16. The matrix of t
linearization then is upper diagonal, with a clear block str
ture: there are ten eigenvalues isolated on the diagonal, t
232 blocks, and one 333 block as well as several cou
plings between them in the upper right corner. While so
eigenvalues can be complex, all of them have negative
part as shown in Fig. 3. For vanishing viscosity, the eig
values become zero or purely imaginary.

Large amplitude perturbations, however, need not dec
Already in the linear regime the nonorthogonality of t
eigenvectors can give rise to intermediate amplifications
a regime where the nonlinear terms become impor
@6–10#. In a related study on plane Couette flow@16# we
used the lifetime of perturbations to get information on t
dynamics in a high-dimensional phase space. As in that c
the amplitude of the velocity field in thez direction indicates
the survival strength of a perturbation. Linearizing the eq
tions of motion around the base flowu0 gives for the pertur-
bationu8 the equation

FIG. 3. Real parts of the eigenvalues of the linearized stab
problem for one driven mode.
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] tu852~u0•“ !u82~u8•“ !u02“p81nDu8. ~27!

The second term on the right-hand side describes the en
source for the perturbation, and depends, because ou0
5u0(z)ey and thus

~u8•“ !u05uz8]zu0~z!ey ~28!

in an essential way on thez components of the perturbation
Thus, if the amplitudesy8 , y10, y12, y14, y16, andy18 be-
come too small, the decay of the perturbation cannot
stopped any more. These modes account also for most o
off-diagonal block couplings. A model for sustainable she
flow turbulence has to include some of these modes.

We chose a fixed initial flow field with a random selectio
of amplitudesy1 , . . . ,y19, scaled it by an amplitude param
eter A, and measured the lifetime as a function ofA and
Reynolds number Re. Figure 4 shows the time evolution
such a perturbation at Re5400 with one mode driven and fo
different amplitudes. For smallA there is an essentially ex
ponential decay, whereas for larger amplitudes the pertu
tion swings up to large amplitude and shows no sign o
decline at all. The results for many amplitudes and Reyno
numbers are collected in Fig. 5 in a landscape plot. For sm
Reynolds number and/or small amplitude the lifetimes
perturbations are short, indicated by the light areas. For R
nolds numbers around 100 isolated black spots appear,
cating the occurrence of lifetimes larger than the integrat
time ~which increases with Re so thattmax/Re54p). The
spottiness for Re between about 100 and 1000 is due to r
changes in lifetimes from pixel to pixel. For Re above 10
the long lifetimes dominate. These results are in good ag
ment with what has been observed in plane Couette fl
Figure 5~b! shows a similar plot for the case with two mod
driven; it is qualitatively similar, but quantitatively shifted t
higher Reynolds numbers.

In connection with the non-normality of the linearize
eigenvalue problem it has been argued that the upper limi
the size of perturbations for which the nonlinear terms in
dynamics can be neglected decreases algebraically
Re2a. Different exponents have been proposed, rang
from 1 to 3 @6,10,19#. It seems that for large Re~where the

y FIG. 4. The dynamics of perturbations for one driven mode
Re5400. The perturbation was selected randomly and scale by
tors 3, 5, 7, 9, and 11, from bottom to top.
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514 PRE 60BRUNO ECKHARDT AND ALOIS MERSMANN
model is actually less reliable because of the limited spa
resolution!, the envelope of the long-lived states in the fra
tal lifetime plot decays like Re21.

The sensitive dependence of lifetimes on initial conditio
and parameters is further highlighted in Figs. 6 and 7. T
first shows the lifetime in the plane of the amplitudesy16 and
y17 at Reynolds number Re5400 with all other component
fixed. There is considerable structure on many scales.
notes ‘‘valleys’’ of short lifetimes between ‘‘plateaus’’ o
longer lifetimes and a granular structure within both. T
striations are reminiscent of features seen near fractal b
boundaries@20#. Figure 7 shows successive magnificatio
of lifetime versus amplitude plots at Re5200. Even after a

FIG. 5. Lifetime of perturbations as a function of amplitude a
Reynolds number for the case of one driven mode~a! and two
driven modes~b!. The black regions correspond to lifetimes larg
than T54p•Re, the white regions to lifetimes shorter thanT/10.
The gray levels interpolate linearly between these levels.
al
-

s
e

ne

sin
s

magnification by 107 there is no indication of a continuou
and smooth variation of lifetime with amplitude.

IV. STATIONARY STATES

Motivated by the observation of stationary structures
plane Couette flow for sufficiently high Reynolds numb

FIG. 6. Magnification of the fractal landscape of lifetimes as
function of the amplitudesy16 andy17 for the same perturbation a
in Fig. 5 at Re5400.

FIG. 7. Lifetimes of perturbations as a function of amplitude f
the case of one driven mode at Re5200 and successive magnifica
tions by a factor of 10.
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PRE 60 515TRANSITION TO TURBULENCE IN A SHEAR FLOW
@12–14# we searched for nontrivial stationary solutions a
studied their generation, evolution, and symmetries.

We computed the stationary states with the help o
Monte Carlo algorithm. The initial conditions for theyi ’s
were chosen randomly out of the interval@21/2,1/2# and the
Reynolds number was chosen randomly matrix with an
ponential bias for small Re in the interval@10,10 000#. With
these initial conditions we entered a Newton algorithm. If t
Newton algorithm converged, we followed the fixed point
Reynolds number as far as possible. We included ab
200 000 attempts in the Monte Carlo search.

The stationary states found for a single driven mode
collected in Fig. 8. No stationary states~besides the lamina
profile! were found for Reynolds numbers below about 19
Between 190 and about 500 there are eight stationary st
which divide into two groups of four symmetry-related sta
each. With increasing Reynolds number more and more
tionary states are found and they reach down to smaller
smaller amplitude. The envelope of all states reflects
Re21 behavior found for the borderline where nonlinear
becomes important. For two driven modes~Fig. 9! the situ-
ation is similar.

The appearance of the branches of the stationary s
and, in particular, their coalescence near Re5190 suggests
that the states are born out of a saddle-node bifurcation.
indeed, the eigenvalues as a function of Re show two eig
values moving closer together and collapsing at zero for
5190.41~Fig. 10!. However, these eigenvalues are not t
leading ones, so that one set of states has three uns
eigenvalues, the other two unstable ones. It is thu

FIG. 8. Stationary states for a single driven mode~a! and a
magnification~b! near the leading saddle node bifurcation near
5190.
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‘‘saddle-node’’ bifurcation into unstable states.
With increasing Re more and more stationary states

pear, partly through secondary bifurcations, partly throu
additional saddle-node bifurcations. Their number increa
rapidly with Reynolds number~Fig. 11! and this increase
goes in parallel with the increase in density of long-liv
states, Fig. 5. The detailed structure of the bifurcation d
gram is rather complex and has not yet been fully explor
We note here that the various stationary states may
grouped according to their symmetries introduced in S
II D and that we found only stationary states, which belo
to equivalent classes with four or eight members. The s
tionary states of the classes with four members are invar
under the transformationT1 or T1T2. In addition, there are
forward-directed bifurcations generating two branches w
the same symmetry properties~eight- or four-member class!
and inverse bifurcations of two branches belonging to eig
member equivalent classes. We also found a backw
directed bifurcation generating branches of an eight-mem
class, which is born out of a four-member class branch. T
scenarios described above are marked in the bifurcation
gram, Fig.8.

e

FIG. 9. Stationary states for two driven modes. Compared
Fig. 8 there seem to be more states and the next bifurcation is
closer to the leading one.

FIG. 10. Eigenvalues of the two branches of the stationary st
a andb near the saddle-node bifurcation around Re'190. Note that
indeed two eigenvalues with real positive and negative real par
zero, but there are also eigenvalues with positive real part.
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V. CONCLUDING REMARKS

The few degrees of freedom shear model introduced h
lies halfway between the simplest models of non-norma
and full simulations. Its dynamics has turned out to be s
prisingly rich. There are a multitude of bifurcations introdu
ing stationary states besides the laminar profile; there
secondary bifurcations, and the distribution of lifetim
shows fractal structures on amazingly small scales. It se
that as one goes from the low-dimensional models@8,6# via
the present one to full simulations one notes not only
increase in numerical complexity but also the appearanc
qualitatively new features@21#.

The simplest models with very few degrees of freed
focus on the non-normality of the linearized Navier-Stok
problem and emphasize the amplification of small pertur
tions. If the nonlinearity is included, a transition to anoth
kind of dynamics, sometimes as simple as relaxation t
stationary point, is found@19#.

Next in complexity are models like the one presented h
that share with the few degree of freedom models the am
fication and the transition but the additional degrees of fr
dom allow for chaos. When nonlinearities become import
the dynamics does not settle to a fixed point or a limit cy
but continues irregularly for an essentially unpredicta
time. The time is unpredictable because of the fractal l
time distribution, which seems to persist down to amazin
small scale: tiny variations in Reynolds number or amp
tudes of the perturbation can cause major variations in l

FIG. 11. Proliferation of stationary states for one and two driv
modes.
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times. This fractal behavior is the new quality introduced
the additional degrees of freedom. Indications for this beh
ior are seen in the experiments by Mullin on pipe flow@22#.
It is interesting to ask just how few degrees of freedom
necessary to obtain this behavior. Reducing our model to
T1 subspace gives one with just nine degrees of freed
~comparable in number and flow behavior to the ones
Waleffe @10#! that still shows this fractal lifetime distribu
tion. Further reduction, as in the four-mode model of@10#,
seems to eliminate them.

The full, spatially extended shear flows share essen
features with the model but add new problems. Spatially
solved simulations of the present model@15# as well as plane
Couette flow with rigid-rigid boundary conditions@12,14#
show the occurrence of additional stationary states at s
ciently high Reynolds number that are unstable. An as
unexplained feature in spatially extended plane Couette fl
which we believe to be connected to the high dimensiona
of phase space, is the difference between Reynolds num
where the first stationary states are born~about 125 in units
of half the gap width and half the velocity difference! and the
ones where experiments begin to see long-lived states~about
300–350! @23#.

The fractal lifetime distributions have obvious similiar
ties to chaotic scattering@24,25,20#. Drawing on this analogy
one would like to identify permanent structures in pha
space away from the laminar profile that could sustain t
bulence. This has partly been achieved by the search
stationary states. Many have been found but irritatingly o
for Reynolds numbers above about 190 while long-liv
states seem to appear much earlier. The solution to
puzzle must be periodic states and indeed we have foun
few periodic states in a symmetry-reduced model at low
Reynolds numbers, close to the occurrence of the first lo
lived states. This suggests that the dynamical system pic
that long-lived states have to be connected to persis
structures in phase space is tenable.

There are several features of the model that can be stu
further. In particular, quantitative characterizations of t
fractal lifetime distribution, visualizations of the flow field,
detailed analysis of the primary and secondary bifurcati
and an investigation of the dependence on the aspect rat
the periodicity cell are required and look promising. We e
pect the lessons to be learned from this simple model to
useful in understanding the dynamics of full plane Coue
and other shear flows. Work along these directions con
ues.
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